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Background paper on the neurobiology of nicotine addiction

Since the 1980s, it has become increasingly recognized by clinicians, researchers, and
public health experts that tobacco products are appropriately categorized among the most
addictive and deadly of all dependence producing substances (World Health Organization 2001;
Royal College of Physicians of London 2000). There are over 4000 chemicals in cigarette smoke,
many of which could potentially contribute to the addictive properties of tobacco. In light of
myriad preclinical studies demonstrating nicotine’s reinforcing properties in many species
including humans (Goldberg et al. 1981; Risner & Goldberg 1983; Goldberg & Henningfield
1988; Corrigall & Coen 1991; Fudala et al. 1985; Huston-Lyons & Kornetsky 1992; Watkins et
al. 1999; Markou & Paterson 2001), there is little debate about the fact that people smoke
primarily to experience the acute psychopharmacological properties of nicotine, and that nicotine
is one of the major components in tobacco smoke responsible for addiction (Balfour 1984;
USDHHS 1988; Royal Society of Canada 1989; Stolerman 1991; Stolerman & Jarvis 1995;
Royal College of Physicians of London 2000). Nevertheless, in addition to nicotine, there are
other factors that contribute to the tobacco smoking habit, as suggested by the fact that tobacco
craving is only partially relieved by administration of pure nicotine forms. These other factors
include sensory (e.g., smell and taste of cigarettes) and conditioned stimuli (e.g., the sight of other
people smoking, tobacco advertisements), as well as other ingredients in tobacco smoke (e.g., tar)
that may have synergistic effects with nicotine (Butschsky et al. 1995; Rose et al. 1993; Shahan et
al. 1999; Crooks & Dwoskin 1997; Jacob et al. 1999; Bardo et al. 1999; Caggiula et al. 2001a,
2001b; Perkins et al. 2001). Thus, it is important to emphasize here that although pure nicotine
can serve as a positive reinforcer, it does not mean that the reinforcing effects of cigarette smoke
are fully accounted for by nicotine. As indicated above, sensory effects of tobacco can acquire
conditioned reinforcing properties. In addition, other chemicals present in smoke can interact
with nicotine to enhance nicotine’s reinforcing effects by either having their own primary
pharmacological effects, in addition to potentially influencing nicotine dose delivered and
absorbed, and the speed of nicotine delivery. For example, Philip Morris researchers found that
acetaldehyde (which is present in cigarette smoke) can serve as a reinforcer in its own right for
animals (DeNobel & Mele as reported by the U.S. Food and Drug Administration 1996; Royal



College of Physicians of London 2000). Further, these investigators found that when nicotine and
acetaldehyde were administered simultaneously, the reinforcing effects were stronger than those
produced by either drug alone. Other substances also have been investigated such as the tobacco
alkaloid and active nicotine metabolite nornicotine which is self-administered in rats (Bardo et al.
1999), and which also produces psychomotor stimulant and discriminative stimulus effects
(Bardo et al. 1997; Dwoskin et al. 1999). Such work has important implications for
understanding the powerfully addicting effects of tobacco (Royal College of Physicians of
London 2000). The present paper will focus on the neuropharmacology of nicotine, and on the
neuronal substrates mediating the reinforcing effects of acute nicotine and nicotine withdrawal
partly because in neurobiological research it is important to isolate and study each factor
thoroughly before interactions of various factors are investigated, and because nicotine is
probably one of the main ingredients in tobacco smoking leading to addiction. Similarly to other
major drugs of abuse, it is believed that both the reinforcing properties of nicotine and the
nicotine withdrawal syndrome lead to the development and maintenance of the tobacco smoking
habit and the precipitation of relapse after a period of abstinence (Wikler 1973; Levine 1974;
Stewart et al. 1984; Ludwig 1986; McLellan et al. 1986; Childress et al. 1986, 1988; Shiffman
1989; O'Brien et al. 1990; Koob et al. 1993; Markou et al. 1993, 1998; Hughes & Hatsukami
1992; Watkins et al. 2000a; Kenny & Markou 2001).

Nicotinic Acetylcholine Receptors

Nicotine is an alkaloid that is present in concentrations of about 1-3% in tobacco
cultivated for product manufacture (Browne 1990). Nicotine is an agonist at several
subpopulations of nicotinic acetylcholine receptors (nAchR; Paterson & Nordberg 2000; Vidal
1996; Henningfield et al. 1996). Nicotinic receptors are expressed on mature skeletal muscle, in
autonomic ganglia and within the central nervous system (Holladay et al. 1997). Not
surprisingly, most interest in the behavioral actions of nicotine has focused on the role of
nAChRs located within the central nervous system. Neuronal nAChRs, similar to other ligand-
gated ion channels, are composed of five membrane spanning subunits that combine to form a
functional receptor (Albuquerque et al. 1997; Dani 2000; Lindstrom et al. 1996; Lena &
Changeux 1998; Role & Berg 1996). Individual neuronal nAChR subunits arrange in different
combinations to form individual nAChRs with distinct pharmacological and kinetic properties.
The neuronal o subunit exists in nine isoforms (02-0t10) whereas the neuronal 3 subunit exists in
three isoforms (32-B4) (Elgoyhen et al. 2001; Arneric et al. 1995; Wonnacott 1997). Oocyte
expression systems injected with pairwise combinations of different neuronal o and 3 subunits
have provided evidence that these subunits combine with a stoichiometry of 2c:3 to produce a

functional neuronal nicotinic hetero-oligomeric receptor (Deneris et al. 1991; Conroy & Berg,



1995; Colquhoun & Patrick 1997). In contrast, o7, 8 and 9 subunits form homo-oligomeric
complexes composed of five o subunits and lacking  subunits (Chen et al., 1998), with only the
o7 pentamer being expressed in the central nervous system.

Based on radioligand binding studies, neuronal nAChRs have been divided broadly into
three classes within the rat brain: those with a high affinity binding site for [*H]-nicotine which
correspond to o4-containing nAChRs, the 0432 combination being the most abundant (Flores et
al. 1992; Picciotto et al. 1995); those with high affinity for ['2I]-a-bungarotoxin which
correspond to o7 nAChRs (Clarke 1992), and those with high affinity for neuronal bungarotoxin
which correspond to a3-containing nAChRs (Schulz et al. 1991). The precise combinations of
nAChR subunits that constitute active nAChRs within the CNS in vivo are unknown and have so
far only been inferred by their pharmacological profile (Kaiser et al. 1998; Luo et al. 1998;
Sershen et al. 1997; Sharples et al. 2000). However, with the advent of more sophisticated tools
it is becoming possible to identify the nAChR subunits expressed by individual neurons within
specific brain regions (Sheffield et al. 2000; Lena et al. 1999).

It has been proposed that the exclusive or predominant role of nAChRs in the brain is the
modulation of neurotransmitter release (Wonnacott 1997). Brain nicotinic receptors are situated
mainly on presynaptic terminals (Wonnacott 1997) but also are found at somatodendritic, axonal
and postsynaptic locations (for review, Sargent 1993). Accordingly, by actions at nAChRs,
nicotine stimulates the release of most neurotransmitters throughout the brain (Albuquerque et al.
1997; Alkondon et al. 1997; Gray et al. 1996; McGehee et al. 1995; McGehee & Role 1995; Role
& Berg, 1996; Kenny et al. 2000; Araujo et al. 1988; Toide & Arima 1989; Wilkie et al. 1996;
Grady et al. 2001). Therefore, as discussed below, it is likely that various neurotransmitter
systems are involved in the adaptations that occur in response to chronic nicotine exposure that

give rise to dependence and withdrawal responses.

Neurosubstrates of Nicotine Reinforcement

Nicotine is an effective reinforcer for both humans and experimental animals as
demonstrated by reports of mild euphoria in humans (Pomerleau & Pomerleau 1992) and
intravenous self-administration studies in several species, such as rats, mice, nonhuman primates
and humans (e.g., Goldberg et al. 1981, 1983; Henningfield et al 1985; Goldberg & Henningfield,
1988; Corrigall & Coen 1989; Donny et al. 1995; Shoaib et al. 1997; Watkins et al. 1999;
Picciotto et al. 1998; Markou & Paterson 2001). The mesolimbic dopaminergic system is
considered of importance for the reinforcing properties of acute nicotine (for reviews, Watkins et
al. 2000a; Picciotto & Corrigall 2002). Acute nicotine administration increased the firing rate of
ventral tegmental area (VTA) dopaminergic neurons (Grenhoff et al. 1986; Pidoplichko et al.

1997), and elevated dialysate dopamine levels specifically in the shell of the nucleus accumbens



(Imperato et al. 1986; Damsma et al. 1989; Mifsud et al. 1989; Benwell & Balfour 1992; Pontieri
et al. 1996; Nisell et al. 1997; Carboni et al. 2000), possibly through excitatory actions at nAchRs
on mesolimbic dopaminergic neurons at both the VTA and the nucleus accumbens (Nisell et al
1995; Teng et al. 1997; McGehee & Role 1996). Interestingly, nAChRs in the VTA were shown
to play a more important role than those in the nucleus accumbens in mediating the effects of
nicotine on dopamine release (Nisell et al. 1994a, b, 1997). The role of nAchRs on VTA
dopaminergic neurons in nicotine reinforcement is supported by the finding that injections of the
competitive nAchR antagonist dihydro-8-erythroidine (DHBE) (Williams & Robinson 1984) into
the VTA (Corrigall et al. 1994), or lesions of the mesolimbic dopaminergic projections with 6-
hydroxydopamine (Corrigall et al. 1992) or systemic administration of dopamine receptor
antagonists (Corrigall & Coen 1991) decreased nicotine self-administration. Nevertheless, a
dopamine receptor antagonist did not reverse nicotine-induced cognitive improvements
demonstrating the specificity of the above results to the reinforcing effects of nicotine (Levin
1997; Levin & Simon 1998). Other mechanisms by which nicotine may elevate striatal dopamine
levels are through enhancement of frontal cortex glutamatergic stimulation of ventral striatum
dopamine release, and/or glutamatergic stimulation of VTA dopaminergic neurons projecting to
the striatum. Nicotine increases glutamate release through agonism at excitatory presynaptic
nAchRs on glutamatergic terminals (Toth et al. 1992; Vidal & Changeux 1993; Nisell et al. 1995;
Radcliffe & Dani 1998; Damaj et al. 1999; Gioanni et al. 1999; Fu et al. 2000). Acute nicotine
administration increased the release of glutamate in various brain sites including the VTA
(Mansvelder and McGehee, 2000; Fu et al., 2000; Grillner and Svensson, 2000), nucleus
accumbens (Reid et al. 2000), prefrontal cortex (Gioanni et al. 1999) and hippocampus (Gray et
al. 1996). In terms of the VTA, it is believed that nicotine acts at presynaptic &7 nAChRs located
upon glutamate afferents (Mansvelder & McGehee 2000) to increase glutamate release in the
VTA which in turn stimulates dopamine release in the nucleus accumbens (Nisell et al. 1994a;
1994b; Schilstrom et al. 1998a, b; Mansvelder & McGehee 2000; Fu et al. 2000). This enhanced
glutamate release then acts at N-methyl-D-aspartate (NMDA) and non-NMDA receptor sites on
postsynaptic dopamine neurons and increases their firing rate. Accordingly, NMDA receptor
antagonists blocked tolerance to the locomotor depressant effects of acute nicotine (Shoaib &
Stolerman 1992; Shoaib et al. 1994), and sensitization to the locomotor stimulant effects of
chronic nicotine (Shoaib & Stolerman 1992). Blockade of postsynaptic metabotropic glutamate
receptors 5 led to decreases in nicotine self-administration in rats and mice (Paterson et al. 2003),
possibly by decreasing nicotine-stimulated dopamine release in the mesolimbic system. Similar
decreases in nicotine self-administration are seen also after administration of dopaminergic and
nAchR antagonists (Corrigall & Coen 1989, 1991; Watkins et al. 1999). In terms of nAchRs,
several studies suggest an important involvement of the 0432 and o7 nAchR subtypes in both the



nicotine-induced release of dopamine and nicotine reinforcement (Picciotto et al. 1998;
Schilstrom et al. 1998a; Watkins et al. 1999; Sharples et al. 2000; Grillner & Svensson 2000;
Markou & Paterson 2001; however, see Grottick et al. 2000). Both the 0432 and o7 subtypes
have been implicated also in nicotine’s effects on memory (Bancroft & Levin, 2000; Levin et al.
1999), as well as the anxiolytic effects of nicotine (Cheeta et al. 2001; Gordon 1999) that also
contribute to persistent tobacco use (USDHHS 1988).

In addition to dopamine and glutamate, another neurotransmitter system that may be
critically involved in the reinforcing effects of acute nicotine is y-aminobutyric acid (GABA).
The dopaminergic neurons projecting from the VTA to the nucleus accumbens (Fallon & Moore
1978) receive descending GABAergic input from the ventral pallidum and the nucleus accumbens
(Waalas & Fonnum 1979; Sugita et al. 1992). These GABAergic neurons have an inhibitory
effect on dopaminergic tone (Klitenick et al. 1992; Engberg et al. 1993) at the level of both the
VTA and the nucleus accumbens (Heimer et al. 1991; Heimer & Alheid 1991; Churchill et al.
1992; Kalivas 1993; Dewey et al. 1992; Kalivas et al. 1992). There are GABA inhibitory
afferents to dopaminergic VTA neurons (e.g., Walaas & Fonnum 1980; Yim & Mogenson 1980),
inhibitory GABA interneurons within the VTA, and medium spiny GABA neurons in the nucleus
accumbens that also inhibit mesolimbic dopamine release (for review, Kalivas et al. 1992).
Accordingly, enhancement of GABAergic transmission abolished both dopamine increases in the
nucleus accumbens and the reinforcing effects of drugs of abuse, including those induced by
nicotine (Dewey et al. 1999). Specifically, systemic injections of y-vinyl GABA (GVG, also
referred to as vigabatrin, an irreversible inhibitor of GABA transaminase, the primary enzyme
involved in GABA metabolism; Jung et al. 1977; Lippert et al. 1977) that leads to increased
GABA levels decreased nicotine self-administration in rats (Paterson & Markou 2002), and
abolished the expression and acquisition of nicotine-induced conditioned place preference
(Dewey et al. 1998). Further, GVG administration dose- and time-dependently lowered the
nicotine-induced increases in nucleus accumbens dopamine in both naive and chronically
nicotine-treated rats as measured by in vivo microdialysis, and abolished nicotine-induced
increases in dopamine in the striatum of primates as measured by positron emission tomography

(Krystal et al. 2002). The use of receptor-selective agonists has suggested the involvement of
GABA receptors in these effects. Systemic or microinjections of baclofen or (3-amino-2[S]-

hydroxypropyl)-methylphosphinic acid (CGP44532), two GABA receptor agonists, systemically

or directly into the nucleus accumbens shell, VTA or peduncular pontine nucleus, but not into
the caudate-putamen, decreased the reinforcing effects of nicotine (Shoaib et al. 1998; Corrigall et
al. 2000, 2001; Fattore et al. 2002; Paterson et al. 2003). Taken together, these results suggest
that enhancement of GABA transmission through activation of GABA receptors may block the

reinforcing effects of nicotine. Interestingly, however, a human clinical study showed that a



single acute dose of baclofen had no effect on either the number of cigarettes smoked or craving
for nicotine (Cousins et al. 2001). Nevertheless, other clinical studies using chronic
administration of baclofen showed that baclofen reduced cocaine and alcohol abuse, and cue-
induced brain activation (Ling et al. 1998; Addolorato et al. 2000, 2002a, b; Childress et al.
2002). Therefore, it is possible that chronic treatment with these GABAergic drugs is required
before tobacco smoking is decreased.

Acute nicotine exposure has effects also on the hypothalamic-pituitary-adrenal (HPA) axis
in rodents and humans that are hypothesized to be mediated by corticotropin-releasing factor
(CRF) transmission in the paraventricular nucleus of the hypothalamus. In humans, two regular
strength cigarettes (equivalent to 2 mg of nicotine) or intravenous nicotine increased
corticosterone and adrenocorticotropic hormone (ACTH) levels (Wilkins et al. 1982; Seyler et al.
1984; Stalke et al. 1992; Newhouse et al. 1990). Similarly, rats injected with nicotine (Cam et al.
1979; Andersson et al. 1983; Conte-Devolx et al. 1985) or exposed to inhalation of cigarette
smoke showed increased levels of ACTH and corticosterone; this effect is mediated by central,
but not peripheral nAchRs (Matta et al. 1987). Specifically, it was shown that the nAchR
antagonist mecamylamine injected into the nucleus of the solitary tract prevented this brainstem
nucleus from releasing norepinephrine into the paraventricular nucleus which in turn prevented
HPA axis activation; this effect was not seen when mecamylamine was injected directly into the
paraventricular nucleus (Matta et al. 1993). Several lines of evidence suggest that CRF in the
paraventricular nucleus mediates the effects of nicotine on the HPA stress response system.
Nicotine induces CRF release in vitro from both the rat hypothalamus (Hillhouse & Milton 1989)
and a cell line derived from rat amygdala (Kasckow et al. 1999). Further, nAChRs are co-
localized with CRF-positive vesicles on axon terminals in the paraventricular nucleus,
demonstrating that nicotine could act directly on hypothalamic neurons to release CRF (Okuda et
al. 1993). Finally, nicotine treatment induced c-fos protein expression in CRF-positive neurons
in several brain areas, including the paraventricular nucleus (Valentine et al. 1996), bed nucleus
of the stria terminalis, central nucleus of the amygdala, and the dorsal raphe (Matta et al. 1997),
indicating that CRF may play a role in mediating the effect of nicotine on behaviors relating to
stress and anxiety.

Finally, opioid receptor antagonists such as naloxone and naltrexone have been reported
to modulate cigarette consumption and have been used as smoking cessation aids (Karras & Kane
1980; Wewers et al. 1998; Covey et al. 1999; but see Nemeth-Coslett & Griffiths 1986;
Sutherland et al. 1995) suggesting that opioid receptors also may modulate the reinforcing effects

of nicotine.

Adaptations in nAchR Function




Chronic nicotine administration leads to an interesting paradoxical change in the function
of nAchRs that consists of receptor desensitization leading to a receptor upregulation (Marks et
al. 1983; Schwartz & Kellar 1983; Changeux et al. 1984; Wonnacott 1990; Flores et al. 1997;
Perry et al. 1999; Mansvelder et al. 2002). There have been complex theoretical speculations
about the role of nAchR desensitization and upregulation in the subjective effects of acute
nicotine, and in the development and maintenance of nicotine dependence (Marks et al. 1992;
Dani & Heinemann 1996; Dani et al. 2000; Quick & Lester 2002; Buisson & Bertrand 2002).
Experimental evidence indicates that long-term exposure to nicotine induces an increase in the
number (Buisson & Betrand 2001; Marks et al. 1992; Wonnacott 1990) and function (Rowell &
Wonnacott 1990) of nAchRs. Nevertheless, this finding is not consistent, and others see a
decrease in nAchR number (Gentry et al. 2003) and function (Marks et al. 1993) with chronic
exposure to nicotine. Further, behavioral findings are most readily explained by decreased
number and/or function of nAchRs with the development of nicotine dependence (Epping-Jordan
et al. 1998; Watkins et al. 2000b; Markou & Paterson 2001; Skjei & Markou 2003) that develop
to counteract the continuous agonist actions of nicotine on the receptors. Most studies reporting
changes in nAchR number and function have been conducted in in vitro experimental systems,
and it is acknowledged that the functional significance of these changes in vivo are unknown
(Buisson & Bertrand 2002) and need to be explored (Kellar et al. 1999). Further, it is known that
different subtypes of nAchRs desensitize and upregulate at different rates which may explain the
seemingly opposite effects seen in some cases (Kellar et al. 1999; Levin 2002; Buisson &
Bertrand 2002). Thus, behaviorally we observe the net effect of these complex adaptations in
different receptor types and brain sites. Adaptations in nAchR number and function may be long-
lasting and may contribute to the difficulty many people have in achieving and sustaining nicotine
abstinence even after the overt signs of nicotine withdrawal have subsided (see below). Although
many smokers attempt to quit smoking and may be successful early on, only 20% of these
individuals are still abstinent after one year (Hunt et al. 1971; Hunt & Bespalec 1974; Hughes et
al. 1991a, b, 1992). These adaptations in nAchRs are likely to also mediate the rapid and high
degree of tolerance seen to several of the effects of acute nicotine (Langley 1905; Royal College
of Physicians of London 2000). Some degree of tolerance is gained also during each day of
smoking and lost during the approximately 8 hours of tobacco deprivation during sleeping hours
(Swedberg et al. 1990). The time course of gain and loss of tolerance varies across nicotine-
induced responses (Collins & Marks 1989; Balfour & Fagerstrom, 1996; Royal College of
Physicians of London 2000), with a large degree of tolerance to the subjective and cardiovascular
effects of nicotine (Soria et al. 1996; USDHHS 1988; Royal College of Physicians of London
2000; Heishman & Henningfield 2000).



Neurosubstrates of Nicotine Withdrawal

Smoking cessation leads to an aversive withdrawal syndrome in humans (Hughes et al.
1991b; Shiffman & Jarvik 1976), components of which are exhibited for 1-10 weeks post-
smoking (Hughes 1992). This syndrome arises, at least in part, because of the cessation of
administration of nicotine through tobacco smoking. The fact that cessation of nicotine
administration leads to this syndrome is suggested by the fact that the withdrawal signs can be
mitigated largely by administration of pure nicotine in a variety of forms (e.g., gum, patch, nasal
delivery; Shiffman et al. 1998; Heishman et al. 1994; Pickworth et al. 1995; Hughes et al. 1990).
Conversely, reduction of the nicotine content in smoked tobacco induced a withdrawal syndrome
in smokers that was accompanied by a significant reduction in plasma nicotine levels (West et al.
1984). This nicotine withdrawal syndrome is comprised of "physical" or somatic, affective and
cognitive components. The most common somatic symptoms include bradycardia and
gastrointestinal discomfort. Affective symptoms primarily include depressed mood, dysphoria,
craving, anxiety and irritability. A cognitive symptom of withdrawal is difficulty concentrating,
while yet another symptom is increased appetite (American Psychiatric Association 1994; Hughes
et al. 1991b; West et al. 1991; Glassman et al. 1990; Parrott 1993).

Several rodent models have been developed that serve to investigate the neurobiology of
nicotine withdrawal and potentially evaluate medications for treating withdrawal. One of the first
and most widely used measures of nicotine withdrawal in rodents is the measurement of the
frequency of somatic sings. These signs are reliably seen in rats, but are less reliably observed in
mice (Malin et al. 1992, 1994; Hildebrand et al. 1997; Epping-Jordan et al. 1998; Isola et al.
1999; Carboni et al. 2000; Semenova et al. 2003). The most prominent signs of the rat
withdrawal syndrome include abdominal constrictions (writhes), gasps, ptosis, facial
fasciculation, and eyeblinks, while miscellaneous other signs, such as escape attempts, foot licks,
genital grooming, shakes, scratches and yawns are rarely observed (Malin et al. 1998; Hildebrand
et al. 1997; Watkins et al. 2000b; Cryan et al. 2003). These somatic signs are both centrally and
peripherally mediated (Malin et al. 1997; Hildebrand et al. 1997; Watkins et al. 2000a; Carboni et
al. 2000). Although the somatic components of nicotine withdrawal are certainly unpleasant, it is
hypothesized that avoidance of the affective components of withdrawal plays a more important
role in the maintenance of nicotine dependence than the somatic aspects of withdrawal (Watkins
et al. 2000b; Kenny & Markou 2001; Hughes 1992). Other rodent models that may be of
relevance to disruption of behavioral performance in humans involve nicotine abstinence-induced
disruptions of food-maintained learned behaviors in rats (Carroll et al. 1989), increases in the
acoustic startle response in rats (Helton et al. 1993), and decreased prepulse inhibition in mice
(Semenova et al. 2003). A critical measure of the affective and motivational aspects of drug

withdrawal is elevations in brain reward thresholds observed after cessation of chronic nicotine



administration (Epping-Jordan et al. 1998; Harrison et al. 2001; Semenova & Markou 2003; Skjei
& Markou 2003; Cryan et al. 2003). Elevations in brain reward thresholds are considered to be
an operational measure of “diminished interest or pleasure” in rewarding stimuli that is a
symptom of nicotine withdrawal (American Psychiatric Association 1994; Covey et al. 1997).
Similar reward threshold elevations are seen during withdrawal from all major drugs of abuse,
such as cocaine (Markou & Koob 1991, 1992; Markou et al. 1992; Baldo et al. 1999; Kokkinidis
et al. 1980; Frank et al. 1992), ethanol (Schulteis et al. 1995), morphine (Schulteis et al. 1994),
amphetamine (Lin et al. 1999, 2000; Paterson et al. 2000; Harrison et al. 2001; Semenova &
Markou 2003; Kokkinidis et al. 1980) and phencyclidine (Spielewoy & Markou 2003).
Interestingly, several dissociations have been observed between the threshold elevations and the
somatic signs associated with nicotine withdrawal (Watkins et al. 2000b; Harrison et al. 2001;
Semenova & Markou 2003), suggesting that the various aspects of withdrawal are mediated by
different substrates.

Although the substrates of nicotine withdrawal have not been investigated as extensively
as the substrates of the reinforcing effects of acute nicotine, there are studies suggesting that
adaptations in the circuits mediating the acute effects of nicotine occur with the development of
nicotine dependence that lead to the withdrawal syndrome. During nicotine withdrawal
precipitated by systemic or intra-VTA administration of the nAchR antagonist mecamylamine in
nicotine-treated rats, dopamine dialysate levels were decreased in the nucleus accumbens (Fung et
al. 1996; Hildebrand et al. 1998; Carboni et al. 2000) and the central nucleus of the amygdala
(Panagis et al. 2000). These mecamylamine injections into the VTA also produced dose-
dependently most of the somatic signs of nicotine withdrawal (Hildebrand et al. 1999), suggesting
the possible involvement of nAchRs transmission in the VTA in the expression of the somatic
signs of nicotine withdrawal. Similar decreases in nucleus accumbens dopamine levels are
associated also with withdrawal from other drugs of abuse, such as ethanol, morphine, cocaine
and amphetamine (e.g., Rossetti et al. 1992; Weiss et al. 1992). By contrast, increases in
dialysate dopamine levels were observed in the frontal cortex (Carboni et al., 2000; however, see
Hildebrand et al. 1998), similar to those seen during withdrawal from other drugs of abuse
(Acquas & Di Chiara 1992; Bassareo et al. 1995). It is noteworthy that the smoking cessation aid
bupropion (an atypical antidepressant; trade name Zyban or Wellbutrin) acts, at least in part, by
inhibiting neuronal uptake of dopamine and thereby enhancing dopamine transmission (Terry &
Katz 1997; Nomikos et al. 1992). Bupropion has been shown to reverse both the threshold
elevations and the somatic signs associated with nicotine withdrawal (Cryan et al. 2003; Malin
2001), while its effects on nicotine self-administration are inconsistent (Shoaib et al. 2002; Glick
et al. 2002; Bruijnzeel & Markou 2003).



Considering that these decreases in nucleus accumbens dialysate levels are induced by
administration of nAchR antagonists into the VTA, it is suggested that a reduction in endogenous
cholinergic tone leads to this effect. The types of nAchRs involved probably include the o4-
containing high-affinity nAChRs (Harvey & Luetje 1996; Damaj et al. 1995; Harvey et al. 1996;
Wonnacott 1997; Epping-Jordan et al. 1998) but not the o7 nAChRs (Markou & Paterson 2001).
Administration of the &7 nAchR antagonist methyllycaconitine did not precipitate either somatic
signs or threshold elevations in nicotine-dependent rats suggesting that these receptors may not be
involved in the development of nicotine dependence, despite the fact that o7 receptors undergo
rapid desensitization in the presence of concentrations of nicotine achieved in the brains of

smokers (Alkondon et al. 2000; Pidoplichko et al. 1997).
Serotonin (5-HT), and the 5-HT , receptor in particular, also appear to play a role in

nicotine withdrawal (Benwell et al. 1990; Kenny et al. 2001). Systemic administration of 5-HT ,
receptor agonists such as 8-OH-DPAT exacerbated the increased startle response observed during
nicotine withdrawal, whereas 5-HT , receptor antagonists, such as WAY-100635, alleviated this
enhanced response (Rasmussen et al. 1997; 2000). Further, the responsiveness to 8-OH-DPAT of
dorsal raphe nucleus neurons was increased during nicotine withdrawal (Rasmussen & Czachura
1997). Thus, nicotine withdrawal may increase the inhibitory influence of somatodendritic 5-
HT, , autoreceptors located within the raphe nuclei and thereby decrease 5-HT release into
forebrain and limbic brain sites (e.g. Benwell & Balfour 1979, 1982a; Ridley & Balfour 1997).
This conclusion is supported by the observation that a serotonergic antidepressant treatment
involving the co-administration of the selective serotonin reuptake inhibitor fluoxetine and the 5-
HT, , receptor antagonist p-MPPI rapidly reversed the elevation in brain-stimulation reward
thresholds observed in rats undergoing nicotine withdrawal but did not block the somatic signs of
withdrawal (Harrison et al. 2001). These data provide further evidence for a dissociation of the
mechanisms mediating affective and somatic aspects of nicotine withdrawal. Consistent with the
above, the 5-HT, , receptor partial agonist buspirone shows efficacy in smoking cessation trials
and may reduce withdrawal severity in abstinent smokers (Hilleman et al. 1992, 1994; West et al.
1991; but see Schneider et al. 1996).

Another transmitter system likely to be involved in nicotine withdrawal is glutamate,
considering the role of glutamate in the reinforcing effects of nicotine (see above). Based on the
stimulatory effects of glutamate neurotransmission on dopamine release (Mansvelder & McGehee
2000; Schilstrom et al. 1998a), it may be hypothesized that decreased glutamate transmission
mediates nicotine withdrawal. Indeed, increased glutamate transmission via antagonism of
presynaptic inhibitory Group II metabotropic glutamate receptors (for review, see Cartmell &
Schoepp, 2000) reversed the affective aspects of nicotine withdrawal (Kenny et al. 2003).

Nevertheless, an agonist at Group II metabotropic glutamate receptors that decreases glutamate



transmission ameliorated the increased startle response seen in rats undergoing nicotine
withdrawal (Helton et al. 1997). This result suggests that either decreased or increased glutamate
transmission is involved in different aspects of nicotine withdrawal. Further studies are
warranted to further investigate the role of glutamate in various aspects of nicotine withdrawal in
different brain sites.

In terms of the CRF system and the HPA axis, generally smokers have elevated levels of
plasma cortisol (Kirschbaum et al. 1992; Frederick et al. 1998) that do not change significantly
within the first several days of quitting smoking (Pickworth et al. 1996; Benowitz et al. 1984;
Teneggi et al. 2002) but decline after several weeks of abstinence (Puddey et al. 1984; Frederick
et al. 1998). Further, there is rapid tolerance to the effects of nicotine on plasma corticosterone
(Benwell & Balfour 1979; Cam & Bassett 1984; Sharp and Bayer 1986). During nicotine
withdrawal, both increases and decreases in corticosterone levels have been reported in
experimental subjects (Benwell & Balfour 1982b; Rasmussen 1998; Andersson et al. 1989).
Further research is warranted to best characterize the effects of nicotine withdrawal in CRF
transmission and HPA axis function.

Finally, the opioid system also may be involved in nicotine withdrawal. The opioid
receptor agonist morphine reversed withdrawal signs in rats undergoing spontaneous nicotine
withdrawal (Malin et al. 1993), while nicotine reduced naloxone-precipitated opiate withdrawal
in rats (Zarrindast & Farzin 1996). Further, i opioid receptor knockout mice do not show
nicotine place preference or nicotine withdrawal (Berrendero et al. 2002). These results suggest
that common neurobiological substrates may mediate nicotine and opiate withdrawal.
Accordingly, naloxone and an analog of the endogenous antiopiate, neuropeptide FF, precipitated
somatic withdrawal signs after chronic nicotine treatment (Malin et al. 1993, 1996; Carboni et al.
2000; however, see Watkins et al. 2000b) but only with extremely high naloxone doses (Carboni
et al. 2000; Malin et al. 1993) compared to those required to precipitate withdrawal in opioid-
dependent rats (Gellert & Sparber 1977; Brady & Holtzman 1981; Koob et al. 1989; Higgins &
Sellers 1994; Schulteis et al. 1994). Further, naloxone injections did not differentially elevate
brain reward thresholds in nicotine- and saline-treated rats (Watkins et al. 2000b). By contrast,
low naloxone doses led to conditioned place aversions in nicotine-dependent rats (Ise et al., 2000;
Watkins et al. 2000b). Overall, this pattern of results suggests that somatic withdrawal signs and
brain reward thresholds are not particularly sensitive to alterations in opioid transmission, while
conditioned motivational states may be. Interestingly, both naloxone (Tome et al. 2001) and
naltrexone (Almeida et al. 2000) recently have been shown to antagonize nAChRs, suggesting
that opioid receptor antagonists may precipitate nicotine withdrawal, at least in part, by directly
blocking nAChRs.



Chronic Nicotine, Opponent Process, Allostasis and the Development of Dependence

There are similarities and differences between nicotine and other major drugs of abuse.
Although nicotine is an effective reinforcer in animal models, when compared directly to other
drugs of abuse such as cocaine, nicotine appears to have less reinforcing efficacy in nondependent
animals (Risner & Goldberg, 1983). The paradox, however, is that chronic administration of
nicotine produces a robust dependence from the perspective of disruption of brain reward
systems. Brain reward thresholds in rats are elevated for periods up to a month with chronic
nicotine exposure (Skjei & Markou 2003), probably reflecting a protracted dysphoric state,
similarly to the one that leads to relapse in humans. To date there is little or no evidence of an
increase in the efficacy of nicotine as a reinforcer in animal models after chronic administration
of nicotine sufficient to dramatically alter reward thresholds, but such studies remain to be
conducted.

From a motivational perspective, such a shift in reward processing may reflect changes in
the dynamics of the reward system associated with opponent and allostatic mechanisms.
Solomon and Corbit (1974) postulated that hedonic, affective or emotional states, once initiated,
are automatically modulated by the central nervous system with mechanisms that reduce the
intensity of hedonic feelings. Termed the opponent-process theory of motivation, Solomon
argued that there is affective or hedonic habituation (or tolerance) and affective or hedonic
withdrawal (abstinence). More specifically, an a-process, which could be either a positive or
negative hedonic response, was proposed to 1) occur shortly after presentation of a stimulus, 2)
correlate closely with the stimulus intensity, quality and duration of the reinforcer, and 3) show
tolerance. In contrast, the b-process was proposed 1) to appear after the a-process terminated and
be slow in onset, 2) to be slow to build up to asymptote and slow to decay, and 3) to get larger
with repeated exposure.

From a neurobehavioral perspective it was hypothesized that in brain motivational
systems the initial acute effect of an emotional stimulus or drug is opposed or counteracted by
homeostatic changes in brain systems. This affect control system was conceptualized as a single
negative feedback or an opponent loop that opposes the stimulus-aroused affective state
(Solomon & Corbit, 1974; Siegel, 1975; Poulos & Cappell, 1991). In the context of drug
dependence, Solomon argued that the first few self-administrations of an opiate drug produce a
circumscribed pattern of motivational changes. The onset of the drug effect produces euphoria
that is the a-process, and this euphoria is followed by a decline in its intensity. Then after the
drug wears off, a b-process state emerges as an aversive craving state.

More recently, opponent process theory has been expanded into the domains of the
neurocircuitry and neurobiology of drug addiction from a physiological perspective (Koob & Le

Moal, 2001). An allostatic model of the brain motivational systems was proposed that explains



the persistent changes in motivation that are associated with vulnerability to relapse in addiction.
Allostasis is defined as the maintenance of stability outside of the normal homeostatic range,
where an organism must vary all the parameters of its physiological systems to match them
appropriately to chronic demands (e.g., reset the system parameters at a new set point; Sterling &
Eyer 1988). Thus, allostasis refers to the integrative adaptive processes maintaining stability
through change, a stability that is not within the normal homeostatic range. In this framework,
addiction is conceptualized as a continuous dysregulation of brain reward systems that
progressively increases resulting in compulsive drug use. Counteradaptive processes such as
opponent-process that are part of the normal homeostatic limitation of reward function fail to
return within the normal homeostatic range and are hypothesized to form an allostatic state. An
allostatic state can be defined as a state of chronic deviation of the regulatory systems from their
normal state of operation with establishment of a new set point. This allostatic state that is
hypothesized to be reflected in a chronic deviation of the reward set point is fueled not only by
dysregulation of reward circuits per se, but also by recruitment of brain and hormonal stress
responses.

In terms of nicotine dependence, nicotine, like other drugs of abuse may be hypothesized
to drive the brain reward system into an allostatic state. Atlhough there is a less dramatic a-
process than with other drugs of abuse, there appears to be a protracted b-process with nicotine.
At least two neurobiological hypotheses can be generated to explain an opponent
process/allostatic view of nicotine addiction. At the molecular level, Dani and Heinemann (1996)
proposed a desensitization model where nicotine stimulates the mesolimbic dopamine system via
activation of nAchRs to produce the reinforcing effects of acute nicotine, but with continued use
the inactivation of these receptors by desensitization leads to adaptive tolerance. During
abstinence, nicotine levels fall, and the increased number of nAchRs throughout the brain begin
to recover to a responsive state that may be dependent on the nAchR subtype. Engaging nAchRs
in non-reward-related pathways could contribute to the aversive emotional states associated with
nicotine withdrawal. According to this hypothesis, smokers in effect would be ultimately
medicating themselves with nicotine to regulate the number of functional nAchRs (Dani &
Heinemann, 1996). Recent work shows that such changes may be evident in the o subunit
family, with the o4, a2 and o7 subunits showing inactivation with chronic nicotine, but the o3
subunit (which is similar in structure to the a6 subunit) showing resistance to desensitization
(Olale et al. 1997). Thus, one could speculate that there are two powerful forces for development
of nicotine addiction at the receptor level: desensitization of nAchRs in non-reward pathways
(that leads to self-medication with nicotine), and resistance to desensitization in reward pathways

(positive reinforcement).



An alternative hypothesis at the neurobiological level of analysis is that chronic nicotine
exposures "deplete" neurotransmitter systems implicated in the reinforcing effects of nicotine and
reward in general. Decreases in dopamine, opioid peptides, serotonin and glutamate all have
been observed following chronic nicotine exposure (see above). Brain sites hypothesized to be
implicated in these neurochemical dysregulations would include elements of the ventral midbrain
such as the VTA and the extended amygdala (central nucleus of the amygdala, bed nucleus of the
stria terminalis, and medial nucleus accumbens). However, with other drugs of abuse, a second
powerful neurochemical dysregulation of the brain motivational systems has been implicated in
the allostatic changes associated with the development of dependence (e.g., recruitment of
activity in the hormonal and brain stress systems). Nicotine may be unique in that there is little
evidence of a robust activation of the HPA axis response to stress during withdrawal from
nicotine, yet there are behavioral signs of anxiety in humans and anxiety-like responses in animal
models (Pickworth et al. 1996). How the brain stress systems acting in the brain independent of
the HPA axis (such as CRF and neuropeptide Y) respond during nicotine dependence is a
challenge for future research.

In summary, nicotine is a somewhat unique drug of abuse in that it produces only a
relatively small reinforcing effect acutely, but it certainly has high dependence-inducing efficacy.
This dissociation suggests that nicotine may be selectively potentiating some part of the
motivational systems associated with opponent processes leading to an allostatic disruption of
reward function. Desensitization of brain nAchRs at the molecular level, depletion of brain
reward neurotransmitters and disruption of brain stress systems are hypothesized to contribute to

such an allostatic state.

POLICY IMPLICATIONS FOR TOBACCO CONTROL

The understanding that tobacco dependence has a pathophysiological basis, which has
been increasingly elucidated by advances in understanding the neurobiological mechanisms of
nicotine reinforcement and dependence, has implications for tobacco control efforts.
Additionally, this understanding strengthens the rationale for comprehensive tobacco programs
that emphasize prevention and cessation efforts; just as understanding that the disease of malaria
is caused by a mosquito-carried parasite strengthens the importance of comprehensive efforts to
prevent exposure, and treat those afflicted to the greatest extent possible.
Prevention

Prevention of tobacco use is critically important because exposure to tobacco is not an
innocuous behavior but rather a behavior that triggers a cascade of neurobiological events which
can, in turn, affect subsequent behavior. Moreover, each subsequent exposure to tobacco leads to

the establishment of tolerance, physiological dependence and a potential strengthening of the



biologically rewarding effects of nicotine. This cascade of events can lead to increased daily self-
administration and progression of the dependence process. It is not known if all nicotine-induced
changes in brain function, such as 300% increases in nAchR numbers in some brain regions
(Perry et al. 1999), and alterations of brain nicotine reinforcement systems (Mansvelder et al.
2002), are fully reversed after nicotine abstinence in all persons. It is plausible that persisting
alterations may confer a continuing need for nicotine in some individuals (Henningfield & Slade
1998). Because dependence occurs on a continuum of severity, efforts should be made to divert
the usual trajectory of increased tobacco use away from the course to addiction as early as
possible to prevent severe addiction from being established. Making every effort to prevent any
use, as well as to prevent the development of severe addiction in those who do initiate use, is
especially important in developing countries where resources for treating severely addicted
tobacco users may be very limited.

Evidence indicates that while all adults are susceptible to the biological effects of tobacco,
it also appears plausible that earlier onset of use is associated with a higher risk of developing
dependence. Therefore, if the population goal is reduced prevalence of tobacco use, then efforts
should be made to discourage initiation of use by persons of all ages (Henningfield et al. 2003).
The possibility that substances in tobacco products and tobacco smoke contribute to addiction
(Royal College of Physicians of London 2000; Henningfield & Zeller 2003) increases concerns
about the risks of tobacco exposure. An additional concern is efforts claiming to reduce the risks
of heavy tobacco use by the promotion of products assumed to be less toxic (e.g., Bates et al.
2003), because such promotion carries the risk of undermining prevention and cessation efforts
(Henningfield & Fagerstrom 2001; Henningfield et al. 2002, 2003).

Cessation

The major implication of understanding that there is a pathophysiological basis for
tobacco addiction also may be considered analogous to the understanding that there is a
physiological basis for malaria. Specifically, this understanding implies that although some
severely addicted people will be able to achieve lasting cessation without medicine, others may
require medicines to enable their nervous and endocrine systems to function satisfactorily in the
absence of tobacco-delivered nicotine. It also implies that there are physiological targets through
which medications can exert effects that would aid cessation, and that some people may require
that the physiological aspects of addiction be treated if they are to sustain cessation.

It is clear that many people can achieve cessation without formal treatment intervention
and this is encouraging for developed and developing countries alike. Unfortunately, it is equally
clear that many people, particularly heavier tobacco users who are also at greater risk of disease,

are unable to sustain cessation without treatment (USDHHS 2000; Royal College of Physicians of



London 2000; Fiore et al. 2000). Because it is not known what percentage of tobacco users
require treatment to sustain cessation or which tobacco users benefit the most from specific
treatments, a goal of comprehensive tobacco control should be to ensure access to a diversity of
effective treatments. An implication for the development of new medications for treating tobacco
dependence is that a variety of potential mechanisms have emerged as potential targets for
treatment drugs. These include drugs that bind to nAchR subtypes and modulate neurohormonal
systems, including those involving dopamine and other catecholamines, serotonin, GABA and
glutamate.

It should be emphasized that understanding of tobacco use as a behavior involving a
neurobiological driving force does not lessen the importance of non-biological determinants of
tobacco addiction. Clearly, factors including social acceptability, knowledge of harmfulness,
restrictions of tobacco use, cost, and accessibility affect the risk of developing and sustaining
dependence, as well as the probability of cessation (USDHHS 2000; Royal College of Physicians
of London 2000; Fiore et al. 2000). The above is consistent with the recommendations of the
U.S. Centers for Disease Control and Prevention advocating that comprehensive tobacco control

strategies address all such factors and provide access to treatment.

Pharmacotherapy — focus on smokeless tobacco

The treatment of cigarette dependence has been well studied, and a number of behavioral
and pharmacologic approaches have been developed and shown to be efficacious. In contrast,
much less research has been conducted on the treatment of smokeless tobacco dependence, and
the approaches generally have been modeled after smoking cessation treatments. Following is a
brief review of the behavioral and pharmacologic approaches that have been studied for
smokeless tobacco use.

Hatsukami and Severson (1999) have reviewed the behavioral approaches that have been
studied. As with smoking cessation, studies generally have shown that behavioral interventions
have improved smokeless tobacco cessation rates compared to control groups with no
intervention. Further, there is a dose-response relationship in that more intensive therapy tends to
improve rates compared to less intensive interventions. In addition, brief advice from a health
care professional can improve smokeless cessation rates, particularly in the dental setting.

There have been few studies of the efficacy of nicotine replacement medications (NRT)
for the treatment of smokeless tobacco dependence. Nicotine gum would be the obvious choice
of NRT formulations because it would allow the smokeless user to receive the oral stimulation
and nicotine normally obtained by tobacco. However, three studies of 2 mg nicotine gum showed
minimal efficacy in long-term cessation rates (Sinusas & Coroso 1993; Boyle et al. 1993;
Hatsukami et al. 1996, 2000). The general lack of efficacy of the gum may be dose-related, as



there has been little published work on the efficacy of 4 mg nicotine gum on smokeless tobacco
use. Moist snuff delivers at least as much nicotine during use as cigarette smoking with peak
plasma nicotine levels during Copenhagen use reaching over 20 ng/ml (Fant et al. 1999).
Whereas 4 mg nicotine gum would not produce the nicotine levels associated with smokeless
tobacco use, it would lead to levels higher than those achieved during 2 mg use. Given that
smoking cessation with nicotine gum is dose-related, one could predict that the same might be
true for smokeless tobacco cessation.

The transdermal nicotine patch in theory could treat smokeless tobacco dependence by
breaking the habit of oral dosing while reducing the nicotine withdrawal symptoms associated
with abrupt withdrawal from smokeless tobacco use. The data thus far, however, are equivocal.
One study compared transdermal nicotine and mint snuff in a 2x2 factorial design and found that
the nicotine patch was effective in increasing short-term abstinence over the placebo patch, and in
reducing craving and withdrawal signs and symptoms from spit tobacco. There have been no
studies of other NRT formulations (e.g., nasal spray, inhaler, and lozenge). The use of lozenge
would be predicted to mimic the effects of nicotine gum because the delivery of nicotine would
be comparable in terms of both speed and magnitude. Hatsukami & Severson suggest that
nicotine nasal spray would not be an ideal treatment option for smokeless users because the
delivery of nicotine from spray would be very rapid in contrast to the slower delivery of nicotine
from smokeless tobacco. The nicotine inhaler involves puffing a device that has the general
appearance of a cigarette and delivers very low doses of nicotine, and thus would appear less
likely to benefit smokeless users.

Two recent studies have shown bupropion to be effective for the treatment of smokeless
tobacco dependence. Results from a placebo-controlled trial of 68 smokeless tobacco users
indicated that at the end of 12 weeks of therapy, the point-prevalence tobacco abstinence rate was
44% in the bupropion group and 26% in the placebo group (p <0.07); however, the effect was not
present at 24 weeks (Dale et al. 2002). Bupropion also was associated with a reduction in
nicotine withdrawal symptoms and weight gain. In the second study (N=70), bupropion produced
significantly higher quit rates for smokeless tobacco cessation at the end of treatment (7 weeks)
than placebo (p < 0.05) with an odds ratio of 2.73 (Glover et al. 2002). These results suggest that
bupropion may be effective in increasing rates of abstinence among smokeless users; however,
larger studies are clearly needed to confirm these findings.

In conclusion, significant advances in our understanding of the neurobiology of nicotine
reinforcement, dependence and withdrawal provides us with excellent starting points on which to
base our efforts to develop effective pharmacological and behavioral interventions to both prevent
and treat dependence of smoked and smokeless tobacco products. Further research is needed to

continue the investigations of the neurosubstrates mediating not only nicotine addiction but also



the effects of other tobacco ingredients that contribute also to the tobacco use habit, and the

synergistic effects of these tobacco ingredients with nicotine that promote this deadly habit.
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